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Abstract 

A class of synaptic learning models – in which presynaptic terminals have access to a 

weighted sum of the postsynaptic activity – has traditionally been dismissed as 

biologically unfeasible.  This rejection is not surprising under traditional notions of 

synaptic connectivity, since postsynaptic cell bodies may be far apart, and there are no 

backwards signals known to sum activity in a terminal-specific manner. However, many 

synapses in the CNS become specialized by glial cell ensheathment.  We suggest that 

such ensheathment may force neighboring cellular elements to share a limited resource: 

extracellular calcium.  We propose the novel theory that certain glomeruli are configured 

so that the instantaneous external calcium concentration will encode the level of spike 

activity in postsynaptic cells.  We concentrate on the specialized glomeruli that exist in 

the cerebellum at the interface of the mossy fiber and granule cell layers.  Here, dendrites 

from scores of granule cells swirl around a mossy fiber terminal, and the whole structure 

is tightly ensheathed in an astrocyte. Simulations demonstrate that the calcium 

concentration is indeed proportional to a sum of postsynaptic activity in the granule cells.  

We demonstrate that these extracellular calcium changes are interpretable from an 

information-processing point of view, generating a novel learning rule for control of 

plasticity at the mossy fiber/granule cell synapse.  This learning rule implements a 

sparsely distributed and statistically independent representation in the parallel fibers.  

Both of these coding properties reduce the complexity of the credit assignment problem 
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between active parallel fibers and climbing fiber at a Purkinje cell.  Although traditional 

models of neural function only emphasize neurotransmitters and point-to-point 

connections, our results highlight the need to quantitatively address the extracellular 

context in which axon terminals and dendrites are found. 

 

Introduction 

One fifth of the mammalian brain is comprised of extracellular space (ECS).  The 

extracellular space is not empty, but instead comprises a complex network of proteins and 

a variety of molecular species.  One extracellular species, calcium, holds a prominent 

position as one of the most important messengers known in the brain.  However, calcium 

exists in low concentrations in the ECS, and its diffusion is slowed by the restricted 

volumes of the extracellular space – therefore, normal neural activity may cause calcium 

to move out of the ECS faster than diffusion can fill it in.  As opposed to the traditional 

view that extracellular calcium exists at a stable concentration, theoretical analyses 

suggest that calcium concentrations may rapidly change as a reflection of local neural 

activity (1-6).  The theory finds experimental support from microelectrode recordings (7-

15), and more recently, from assays of neurotransmitter release in rat brainstem (16), 

measurement of tail current in chick ciliary ganglia (17), calcium-dependent binding of 

antibodies (18), effects on neighboring cells (19), and direct measurements with 

extracellular calcium dyes (20).   Such changes in extracellular calcium are likely to carry 

significant functional impact, due to the many signaling roles calcium plays. 

 

Glial ensheathment: the Mossy fiber – granule cell glomerulus 

The association of neurons and nerve fibers with glial cells is nearly ubiquitous 

throughout phylogeny, and seems to provide many mechanical functions.  For example, 

myelinating sheaths around an axon enable salutatory conduction.  In more specialized 

cases, many synapses in the CNS are ensheathed by glia (21); such synapses can be found 

in the retina, hippocampus, and cerebellum. 

 

As we will outline in this study, such ensheathment may serve a computational role.  We 

concentrate on the intriguing example of the mossy fiber – granule cell glomerulus in the 
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cerebellum.  This glomerulus is a strategic site for neuronal connectivity in the cerebellar 

cortex.  Within this structure, mossy fiber axons originating from various regions of the 

CNS form synapses with the dendrites of granule cells.  These claw-shaped dendrites, as 

well as axons of Golgi cells, swirl around the mossy fiber terminals, forming 

characteristic rosettes (22-24).  A glial cell, known as the velate astrocyte, develops a 

tight sheath around each glomerulus (24, 25).  The role of the glial ensheathment has 

been speculative and controversial, receiving essentially no attention from a 

computational point of view. Roles that have been postulated for the neuroglial sheaths 

are structural support, electrophysiological insulation of individual glomeruli, and the 

maintenance of chemical equilibrium in the interstitial fluid (26), (23), (27), (28), as well 

as chemical barriers to the further outgrowth of granule cell dendrites and Golgi cell 

axons (29).  Our findings described in this paper suggest a different, novel role for the 

neuroglial sheath: this anatomical substrate limits the supply of extracellular calcium, 

such that the extracellular calcium concentration comes to represent a sum of total 

postsynaptic activity.  This sum can then be used by the neural elements within the 

glomerulus to navigate plasticity. 

But is there a principled reason to think that it might be desirable for the 

cerebellum to need the knowledge of such a sum?  From a theoretical point of view, there 

is a class of learning rules that describe the evolution of connection strengths within the 

glomerulus in terms of the coding strategy of the granule cells, and these rules require 

just such a sum over postsynaptic activity.  Let us look at the motivation behind those 

rules now. 

 

How does the granule cell layer encode its input? 

A knowledge of the firing pattern of GCs is essential to any theory of the function of the 

cerebellar cortex.  The only output neurons of the cerebellum, the Purkinje cells, receive 

synapses from up to 200,000 GCs (30).  It is theorized that the activity of too many GCs 

would carry no information and abolish response selectivity (31).  It is therefore 

reasonable to assume that the granule cells may be most effective by encoding their input 

sparsely.  This would mean that for any given context (as carried by the mossy fibers), 

only a small subset of the granule cells would become active, while the rest would remain 
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silent.  Sparse encoding has two advantages: (1) lowering of the total amount of action 

potential generation greatly lowers metabolic cost, and (2) it simplifies the credit 

assignment problem at the Purkinje cell.  That is, if only a very small number of granule 

cells drives a Purkinje cell, their responsibility is more easily assessed (they are given 

‘credit’), and plasticity can be appropriately distributed.  

 If we assume sparseness, and desire to maximize the mutual information between 

the mossy fiber inputs and the granule cell outputs, then a learning rule for synaptic 

weights can be derived.  The details of the rules and their derivation are relegated to the 

Appendix, but the point that will become important is quite simple: under the sparseness 

constraint, mutual information is maximized when the weight change is a function of a 

sum of postsynaptic activity.  Given the neural arrangements in most parts of the brain, 

such a weight rule can usually be dismissed as biologically unfeasible.  However, in the 

special case of the cerebellar glomerulus (and perhaps glomeruli in other brain regions), 

the configuration of parts suggests that such a learning rule might be feasible after all.  

By examining and simulating the relevant structures, we will now construct the logic that 

leads us to the suggestion that the glomerulus may be built to implement such a 

‘backward-sum’ learning rule. 

 

Totality of ensheathment 

Ensheathment means that diffusion of extracellular calcium from neighboring regions of 

the ECS is cut off, or at best greatly restricted.  In this situation, the competition for 

calcium is more fierce, since calcium taken from the shared pool in the glomerular 

extracellular space (GECS) immediately becomes absent from the point of view of the 

other dendrites.  We have been speaking as though the ensheathment of a glomerulus is 

total, i.e., the extracellular calcium is a limited pool of fixed size, in which case the 

amount of calcium that fluxes into a dendrite equals the amount that is missing from the 

extracellular space.  Of course, the glomerulus cannot be without communication to 

outside extracellular space, or else action potentials would not be able to propagate into 

the glomerulus along the mossy fiber axon and the granule cell dendrites, since such 

propagation requires an open circuit of ion flow.  On this subject, it should be noted that 

lamellar processes of the velate astrocytes separate one glomerulus from another in the 
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islet and interweave with the dendrites and Golgi cell axons at the periphery of the 

glomerulus (23).  This means that although the GECS may have limited communication 

with surrounding ECS, the space outside the glomerulus is also quite restricted.  In 

general, the extent to which the glomerular ECS communicates with outside ECS will not 

qualitatively change the results presented here.  Even with a communicating GECS, the 

extracellular calcium concentration will still reflect a sum of the postsynaptic activity.  

The extent of outside communication will modulate the size of the calcium fluctuations 

and the speed of recovery to ambient levels. 

 

Action potentials in granule cell dendrites 

Granule cells are electrotonically compact, and both experiments and modeling indicate 

that the soma and dendrites of the granule cell will behave as a single electrical 

compartment (32-35); in other words, action potentials in the soma will appear almost 

immediately throughout the short dendrites.  Granule cell dendrites contain voltage-gated 

calcium channels (VGCCs) (36, 37), NMDA receptors (35, 38), ATP-ase calcium pumps 

(39) and Na+/Ca++ transporters (40), all of which exist not only on the granule cell body 

but are clearly seen with immunohistochemistry to express heavily on the dendritic 

endings inside the glomeruli.  The action potentials along the GC dendrites are expected 

to cause large fluxes of calcium into the dendrite through the calcium-fluxing channels. 

This influx of calcium is mirrored by an efflux of calcium from the extracellular space 

outside the dendritic membrane.  Hence, the strobing of the GC dendrite by a spike is 

encoded as a change in calcium in the extracellular space (1, 2).  This effect provides a 

natural computational mechanism for integrating the activity of several disparate post-

synaptic cells. 

 

There is a very large imbalance between the time scales of influx and extrusion (2 orders 

of magnitude), which means that quickly heightening postsynaptic activity in a 

glomerulus can lower the available calcium, especially as a remarkable 58% of the 

glomerular volume is comprised of GC dendrites (41, 42).  This would generally be true 

in situations where the total volume of the ECS is limited, as when some numbers of 

consumptive elements are ensheathed by glial cells, for example (3).  In this way, 



  6 

consumption by a set of elements can lower the available calcium to other elements.  This 

leads to a rapid bi-directional transfer of information -- in this case, external calcium 

fluctuations encode information about post-synaptic (granule cell) activity as effectively 

as pre-synaptic (mossy fiber) activity. 

This leads to the hypothesis that the extracellular calcium will encode an average level of 

granule cell activity.  This hypothesis is explored both at the biophysical and theoretical 

levels.  At the biophysical level, we explore the dynamics of external calcium changes in 

a Monte Carlo simulation of the mossy fiber/granule cell glomerulus.  At the theoretical 

level, we attempt to interpret how such calcium changes serve as information-bearing 

signals, allowing the pre-synaptic mossy fiber terminal to have a measure of the post-

synaptic spike activity of several granule cells. 

 

This dual approach allows us to address several questions:  

Are cerebellar glomeruli configured to magnify changes in extracellular calcium 

concentration? 

What information would such calcium changes carry? 

What are the computations carried out by that flow of information? 

 

Details of the model 

 
We have simulated the glomerular structure in such a way that the statistics would match 

those that were determined in (41, 43).  In our Neural Growth Simulator (programmed in 

C by D.M.E., Fig 2A), dendritic tips determine their paths by local avoidance rules.  Each 

tip attempts to take a step under the constraint that it cannot come within a fixed distance 

of any other dendrite.  After 80 steps of the simulation, growth is stopped, and the 

dendrites ‘inflate’ to fill any available voxels.  When the voxels have all been committed, 

a Marching Cubes algorithm constructs each dendrite into a 3D polygon mesh.  The 

coordinates of the polygon mesh are read into MCell, where calcium ions, channels, and 

pumps are distributed appropriately 
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In the studies presented here, we have used the fact that in the mammalian hippocampus, 

dendritic calcium channel densities are estimated between 1-15 channels/µm2 (44).  We 

estimate each channel to have a 7 pS calcium conductance, and we choose a density of 7 

channels/µm2.  For these Ca++ channels, we used a Neuron mod file (based on Friedman 

et al, 1993).  We constructed pumps for first order extrusion with a decay constant of 

~300 ms.  In order to control for a mis-estimation of the total integrated current, we will 

be exploring consumption over a range of calcium channel density estimates in the near 

future.  The diffusion coefficient was 2.2e-6 cm2/s. 

 

How much calcium does a BPAP consume? 

To estimate the extracellular volume of a glomerulus, we take the average of 4 serially-

reconstructed glomeruli from Jakab and Hamori (1988).  The average glomerular volume 

is 151.37 um3, and the average mossy fiber terminal volume is 50.9 um3.  The difference, 

100.4 um3, reflects the volume occupied by the GC dendrites and Golgi axons.  Taking 

the extracellular volume fraction (EVF) to be between 13 – 20% (ref Sykova), we 

estimate that the extracellular volume is approximately between 13 – 20 um3.  At an 

assumed resting [Ca++]o = 2 mM, this translates from 15.7 x 106  to 24 x 106 calcium 

atoms available in the extracellular space. 

 

Would a single BPAP engender a large enough signal to be distinguishable from 

statistical fluctuations in the resting calcium concentration?  Statistical mechanics 

predicts the expected density fluctuations in a volume of particles to be σ = N .  Thus, 

in a typically sized glomerular cleft at 2 mM resting concentration, we expect at any time 

to find 20 x 106 atoms plus or minus a standard deviation of 4472 atoms.  This is 

approximately a 0.02% fluctuation, which for a 2 mM resting concentration translates to 

a first standard deviation at 1.9996 mM.  By comparison, a dendrite is likely to consume 

much more calcium.  It is therefore apparent that even a single decrement of 14,000 

atoms would be clearly distinguishable as a signal from the normal background 

fluctuations. 
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Throughout this work, we assume passive diffusion.  The extent to which calcium 

changes may be magnified or dampened by active mechanisms in vivo is unknown and 

remains for the future. 

 

Extracellular calcium as a function of postsynaptic activity 

To build our argument, we will begin with the simplest possible equation to describe how 

extracellular calcium as a function of post-synaptic activity in the granule cells: 

 

�−∝
j

jj spC      (1) 

where C is a time-averaged deviation from a concentration set-point, θ, i.e.,  

C=[Ca++]o-θ, and [Ca++]o is the extracellular concentration in the glomerulus.  sj is the 

firing rate in a granule cell j, and pj is the amount of calcium consumed by the dendrites 

of that cell during a BPAP.  The contribution each granule cell dendrite makes to the sum 

will be weighted by several factors: to name a few, the density and distribution of 

calcium channels on the dendrite, the amplitude of the back-propagating spike, and the 

total surface area of dendrite.  Thus, a granule cell with a high p will consume more 

calcium from the shared resource in the glomerulus each time it generates a spike than a 

GC with a low p.  Since each GC thus can make a different contribution, the total calcium 

concentration will reflect a weighted average of GC activities.  We will refer to the 

quantity pj as the backward weight of granule cell j (conversely, we will denote the 

efficacy of synaptic transmission, traditionally called a weight, as the forward weight, 

below).   

 

The assumption here is that the extracellular calcium concentration will (on average) 

reflect a weighted sum of the postsynaptic GC activity.  The time average over which we 

consider the calcium concentration is around 200 ms. 

 

The simplicity of equation 1 ignores several other contributors to the total calcium 

concentration – the mossy fiber terminal, the Golgi cell axons, and the velate astrocyte – 

on the grounds that those contributions will be small compared to that of GC dendrites.   
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To justify equation 1, we now briefly discuss consumption by these other elements, and 

then the issue of replenishment, below.   

 

Consumption 

The glomeruli contain at least 2 calcium consuming elements besides the GC dendrites: 

the mossy fiber axon terminal and the golgi cell axon terminals.  However, theoretical 

analysis indicates that the amount of calcium consumption by axon terminals is much 

smaller than that by dendrites (1, 2, 5).  The simple reason is because VGCCs are 

clustered at hotspots on axon terminals in order to concentrate calcium influx at the 

neurotransmitter release sites, whereas VGCCs on dendrites occupy a much larger 

surface area.  When a spike appears in dendrites, the surface area over which calcium 

fluxes in means the total decrement in calcium can be quite substantial (1, 2, 5).   

 

In further support of equation 1, note that of the volume of the glomerulus, a striking 58% 

of the volume is taken up by the granule cell dendrites (41, 43). 

 

It is possible that the velate astrocyte that provides the ensheathment may participate in 

determining the extracellular calcium concentration, since astrocytes are known to have 

both voltage-gated calcium channels (45) and ligand-gated calcium-permeable channels 

(46), and there is also the suggestion that Na+/Ca++ transporter can reverse under 

conditions of lowered [Na+]o, taking calcium in from the ECS (45, 47, 48).  While we do 

not further consider the role of the glial cell in this paper, we suggest it may be regulative 

on longer time scales. 

 

As a caveat, ignoring the contribution of the MF terminal depends in part on the relative 

firing rates of the MF and the GCs, for the MF could potentially makes a larger 

contribution to the [Ca++]o if its firing rate goes up and the GC firing rate goes down.  In 

the limit, if the MF alone were firing, with no activity in the GCs, then equation 1 would 

be entirely incorrect – however, we consider this limit quite unlikely, and will here 

consider the reasonable range wherein the GC dendrites are contributing most the 

calcium changes. 
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Replenishment 

Calcium extrusion via exchangers and pumps operates on a time scale approximately 2 

orders of magnitude slower than the rapid calcium transient due to APs (49-52).  As a 

result of the imbalance between the depletion and extrusion times, regional background 

activity may be expected to regulate a background Ca++ level; such a level may set 

important parameters in attention, learning, and/or plasticity 

 

Plasticity as a function of extracellular calcium  

The dominant experimental model for use-dependent synaptic learning is long-term 

potentiation and depression (LTP/LTD), a property observed at glutamatergic synapses 

throughout the CNS. Calcium influx is an essential trigger for plasticity (53), while the 

magnitude of the calcium influx tips the balance between the outcomes of LTP vs LTD 

(54-57).  LTP occurs when there is a high level of postsynaptic calcium, and LTD results 

with moderately elevated postsynaptic calcium.  The mechanics underlying this 

phenomenon appears to be the biochemical balance of phosphorylation and 

dephosphorylation, which can tipped in either direction by the amount of available 

intracellular calcium, and can change the phosphorylation state of various downstream 

targets.  Specifically, a large rise in intracellular calcium can activate protein kinase C 

and/or calcium/calmodulin-dependent kinase II (CamKII), which can lead to LTP.  On 

the other hand, a lesser amount of calcium influx can activate protein phosphatase 1, 

causing LTD (58, 59).  In other words, postsynaptic enzyme cascades measure 

intracellular calcium near the postsynaptic density and translate it into changes in 

synaptic strength (54).  

 

This is important in the present study, since calcium influx is a function of extracellular 

calcium: lowering extracellular calcium lowers the amount of available ions for influx.  If 

plasticity at the MF-GC synapses follows the same pattern of LTP and LTD in other 

brain areas – specifically, based on calcium influx – it follows that the plasticity will be a 

function of the shared extracellular calcium. 
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We therefore ask the question: what would a learning rule look like in which each weight 

change of the MF-GC synapses depended on the global [Ca++]o?  We begin with the 

simplest possible rule: 

θ−∝∆ ++
oi Caw ][      (2) 

When the extracellular concentration [Ca++]o is low (below some set-point θ), the forward 

weight wi is more likely to depress as a result of less calcium influx into the postsynaptic 

dendrite.  This is consistent with a variety of learning rules that have been developed over 

the past decades, mostly involving covariance (60), which evolved into the BCM rule 

(61), the ABS model (57), evidence from frequencies that induce LTD vs LTP (62), and 

biochemical pathways (54).  The above theories are all consistent with the single 

hypothesis that the magnitude of postsynaptic calcium influx will determine the direction 

of the weight change. 

 

With this in mind, it seems reasonable to think of the spike in the GC dendrites as 

“assaying” the calcium concentration in the glomerulus.  This is consistent with the 

experimental evidence that LTD is induceable even at inactive synapses if postsynaptic 

[Ca++]i is raised to the appropriate level by antidromic or heterosynaptic activation (57).  

Thus, equation 2 is only applicable as a learning rule when the postsynaptic cell is 

spiking, i.e., when sj>0.   

 

The limitation of equation 2 is that it does not individuate the many different connection 

strengths in a glomerulus, i.e., all the weights in a given glomerulus will change in the 

same manner.  To make individual weight changes for the j different connections, we 

now make the first main assumption in our model, which will await experimental 

verification.  We assume that the set-point for each weight can change as a function of 

the weight itself, such that equation 2 becomes: 

)(][][ ioioi wCaCaw λθθ −−=−∝∆ ++++    (3) 

where λ is a constant of proportionality.  This is an interesting learning rule, as it asserts 

that a potentiated synapse will need less total extracellular calcium to potentiate further.  

This may be thought of as follows: a potentiated dendrite has more calcium-fluxing 
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channels, which means that it can reach a higher total level of influx given the same 

extracellular concentration. 

 

The relationship of forward weights to backward weights 

The participation of each GC dendrite in determining the [Ca++]o in the glomerulus (i.e., 

its backward weight) will be weighted by several factors.  The main factors will be the 

concentration and distribution of calcium-permeable channels on the dendrite (both 

ligand- and voltage-gated), the amplitude spike in the dendrites, and the total surface area 

of dendrite within the glomerulus.   

 

We now make the assumption that forward and backward weights will be proportional.  

The simplest justification of this assumption is to concentrate on the postsynaptic NMDA 

receptors: an increase in their number will cause both a stronger response to glutamate. 

 

There is evidence for glutamate spillover in the glomerulus: the activation of a mossy 

fiber terminal influences mGlu receptors on neighboring Golgi cell axons in a frequency 

dependent manner (63).  This establishes that mGluRs on inhibitory interneuron axons 

sense the glutamate of neighboring excitatory synapses, but it also leads to the possibility 

that a resting level of glutamate, shared in the cleft, will bind to NMDA receptors, 

making them, effectively, like voltage-gated calcium channels; i.e., when the dendrite is 

depolarized, the NMDA-R already has ligand bound.  It has also been shown that certain 

AMPA receptors on granule cells are calcium permeable (64, 65).  Therefore, an 

upregulation of GluRs may be commensurate with higher calcium influx. This 

assumption, critical to the next step of our analysis, awaits experimental verification. 

 

Having made the assumption that pj α wj, we may substitute a weighted sum of the 

postsynaptic activity into equation 2: 

 

� �−=−=∆
j j

jjijjii swwspkww αλλ    (4) 
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Equation 4 is very interesting because it includes a measure of all the postsynaptic 

activity.  This is a novel learning rule in that it allows the weight change to be a function 

of a summation of postsynaptic activity. 

 

This theory embeds two main assumptions that have yet to be experimentally verified or 

ruled out.  The first is that the LTD/LTP set-point (θ) is a function of the current weight 

(equation 3).  The second assumption is that forward weights are proportional to 

backward weights (wj α pj), i.e., a dendrite with strong synaptic efficacy will also 

consume more calcium. 

 

RESULTS 

 

Example of our main simulation result are shown in Figure 3.  In this Monte Carlo 

simulation of extracellular dynamics, different GC firing rates set the extracellular 

calcium levels in the glomerulus to different set points.   Specifically, to understand the 

effect of normal background activity on the baseline [Ca++]o, we simulated a glomerulus 

that communicates with 40 randomly active GCs (Poisson firing rates; 5 Hz and 35 Hz).  

The ECS concentration drops to its new set point in ~500 msec in Fig 3A.  However, 

depending on the pattern of firing, that set point can be approached more rapidly (Fig 

3B). 

 

Why do granule cells maintain low firing rates? 

Because of the sensitivity of NT release on extracellular calcium, a granule cell is likely 

to bounded away from high firing rates.  To understand this, note that a high spike rate 

traveling up the dendrites will presumably veto all afferent transmission.  When there is 

no more NT release to drive the granule cells, the firing rate will necessarily return to 

lower values.  So we see that baseline firing will be bounded away from high firing rates. 

 

This lower calcium level in Fig 3 would reduce the probability of further neurotransmitter 

release, which would in turn reduce further firing of the GCs. Thus, the limited supply of 

Ca++ immediately biases the system toward a sparse encoding. 
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Why are glomeruli ensheathed? 

Despite the fact that the ECS constitutes 20% of the volume of the brain, it is not 

continuous everywhere.  In a closed volume, such as a glomerulus ensheathed by glial 

cells, it is possible that a relatively fixed amount of external calcium is shared by the 

terminals and dendrites of that volume.  In this way, recovery time would be much slower 

than those in the examples presented here – recovery would depend in large part on 

extrusion rates.  A mathematical analysis of astrocytic partial-ensheathing of a synapse is 

consistent with this notion (3).  

 

Why are GC dendrites digitiform? 

A question that might be asked about the GC dendrites is why they have four digits 

spread throughout the glomerulus, instead of only one.  A speculation, in light of the 

current framework, is that the spreading of the dendrite allows much faster equilibration 

of the calcium signal.  In other words, when a spike travels up a GC dendrite and 

consumes calcium, a digitiform dendrite allows the local calcium changes to become 

quickly global, with all parts of the glomerulus sensing the same [Ca++]o.  Analytic 

analyses in progress indicate that the speed of equilibration with four digits is ~16 times 

faster than equilibration with one digit. 

 

DISCUSSION 

Although synaptic transmission is often thought of as the only means of communication 

between nerve cells, it is almost certainly an incomplete description.  It appears that some 

structures may be specialized to take advantage of limited resources.  Such mechanisms 

have the property of bi-directional information transfer, which is not thought to occur 

with synaptic transmission.  In this way, a pre-synaptic cell could have a measure of the 

spiking activity of the pre-synaptic cells. 

 

The importance of the glomerular is suggested by the demonstration in cultures of 

dissociated mouse cerbellar cells that natural histogenetic mechanisms persist after 

dissociation and reaggregation of cerebellar cells, which retain specificity of their 
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synaptogenic capabilities both with regard to appropriate cell types and the 

morphological form that the synapses take.   Specifically, mossy fibers still formed 

synaptic glomeruli [Orkand, 1984 #24]. 

 

Beginning with a model of the glomerulus, we have shown that calcium consumption and 

diffusion is predicted to lead to rapid, local changes in limited pool of external calcium in 

the GECS.   

 

The exact size of the calcium signal depends on several parameters.  For example, the 

cleft width might be used by the system as a control parameter: changing the gap between 

elements can amplify or squelch the calcium signal.   

 

Spillover 

In a continuous ECS, an extracellular calcium signal will not travel far through the tissue 

– the signal will remain approximately as local as neurotransmitter signals such as 

glutamate (1, 2, 5).  This is because diffusion from neighboring regions of the ECS will 

quickly equalize the decrement.  However, in the case of a limited ECS, as in an 

ensheathed glomerulus, the signal will remain local (21).  The calcium depletion parallels 

the evidence for glutamate spillover in glomeruli (63).  Specifically, spillover is likely to 

boost the efficacy of active excitatory fibres by locally reducing the level of inhibition 

(63).  By the same reasoning that calcium changes will be of larger magnitude and longer 

duration than they would be in a more open ECS. 

 

Other calcium-consuming channels 

Both voltage-gated conductances, and ligand-sensitive calcium-permeable channels, 

causing extensive calcium consumption (66).   Although we only concentrate on voltage-

gated channels here, it should be noted that NMDA, ATP, and nicotinic Ach receptor 

channels show a fractional Ca++-current of 12%, 6.7%, and 4%, respectively (67); 

additionally, certain AMPA receptors are permeable to calcium (46, 68).   Such channels 

have widely different flux rates; for example, when NMDA receptors are activated by the 

coincidence of glutamate and depolarization, the local Ca++-consumption lasts 80 - 100 
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msec.  Such a slow calcium sink could generate a substantially different calcium levels 

for the surrounding cells. 

 

Other methods of reading extracellular calcium 

However, aside from “reading” [Ca++]o through levels of influx, a cell might also detect 

the external levels directly.  An intriguing example is the recently cloned Ca++-sensing 

receptor (CaR) (19, 69-71).  The activation of the CaR has a steep sigmoidal dependence 

on [Ca++]o.  In parathyroid cells, a 2-3% change in [Ca++]o can activate the CaR, since the 

middle of the sigmoid is positioned at the physiological range of concentrations (71).  In 

brain the CaR is widely distributed, being particularly abundant in neurons in cerebellum, 

hippocampus, subfornical organ, and cingulate cortex (47), as well as in glia (72).  This 

strongly suggests that the alteration of calcium levels in a cleft can be directly sensed by a 

G-coupled protein whose function, and this has been directly demonstrated (19).  This 

metabotropic way of reacting to changes in external calcium may live on a slower time 

scale than the influx and binding of calcium to enzymes.  

 

On the other hand, there may exist other ways of reading [Ca++]o levels that are faster 

than activation of enzymes through influx.  For example, rapid functional effects are 

sometimes expressed in channel dynamics: in squid giant neurons, external calcium 

levels quickly modulate both the gating and selectivity of K+-channels (19, 73).  

 

An evolution of coding strategy? 

An interesting side note is that the glomeruli form over weeks after birth in rabbit (74), 

chick (75), and in rats (42).   We propose that this may represent an evolution of coding 

strategy. 

 

Moreover, there is an interesting temporal relationship between the dendrites and the glial 

ensheathment: electron microscopic analysis in the developing rat shows that between 

postnatal days 15 – 45 (P15-45), the size of the mossy fiber rosettes do not change, but 

the glomerulus increases enormously due to the continuing multiplication of postsynaptic 
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dendrites (42).  The formation of neuroglial sheaths, which occurs after the third postnatal 

week, corresponds to the waning phase of dendrite extension (22). 

 

Neurotransmitter release 

The sensitivity of neurotransmitter release to external calcium (76-79) suggests that such 

a decrement will influence the probability of synaptic transmission.  If the presynaptic 

terminal were invaded by an action potential just after a volley of calcium-consuming 

back-propagating spikes in the GC dendrites, the presynaptic release probabilities would 

be diminished.   

 

In conclusion, the ensheathment of the glomerulus may force neighboring granule cell 

dendrites to share a resource that is in limited supply on short temporal and spatial scales.  

The resting levels of external calcium are not sufficiently high to protect against large 

decrements in this important resource.  Instead, it seems as though the tissue is 

engineered so that external calcium levels are meant to fluctuate dramatically; given the 

functional importance of external calcium, we are led to hypothesize that external 

calcium fluctuations are an important class of information-bearing signal. 

 

 

APPENDIX 

The granular layer: model  

A linear relationship between the activity of the mossy fiber inputs x and the granule cells 

activity s is assumed and the overall effect of Golgi cell inhibition on granule cells is 

represented by a bias weight factor wo. The granule cells activity is given by s = W x – 

wo, where s, W, x, wo   ≥≥≥≥ 0, and is assumed to be sparse and as independent of each other 

as possible. Their activity is therefore assumed to have a prior probability density 

function that has high kurtosis and multiplicative: ∏=
i is sf )((s)fs , where )( is sf  is 

chosen to be the same exponential density for all granule cells, 

)()exp()( 1 iiis sssf γαα =−=  where the function 1γ   is the gamma probability density of 

order 1. Due to the positive constraint on the granule cell’s firing rates s ≥≥≥≥ 0, the prior is 
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more precisely  )()( i
s

is sUesf iαα −= where )(⋅U is the step function. To simplify the 

derivation of the learning rules this prior was approximated by two exponential priors: 

)exp()( iis ssf αα −=  for 0>is , and )exp()( iis ssf βα −=  for 0≤is , where 

αβ >> .Taking the limit as ∞→β , the original prior with the step function is 

recovered.  

 

Role of Golgi cells 

If the mossy fibers inputs have the form oxxx += ˆ , where xo is the mean of x and x̂  has 

zero mean, xo will be large and positive since the firing rates of the mossy fibers are 

positive and may be large. As a result, in order for the granule cells activity s = W x – wo  

to be sparse, its average will be close to  0 if the bias weight vector is near wo   ~  W xo   

and  therefore positive. The bias weight  wo represents the Golgi cell role of setting the 

threshold of granule cells so that their activities s remain sparsely distributed with a peak 

in their probability distribution at 0, so that the granule cells are most of the time inactive 

during their lifetime.   

 

Bayesian derivation with maximum likelihood 

The objective is to maximize the probability density of the input mossy fiber data (X) 

given the model. The likelihood function in terms of M observations xk of x is 

∏ =
= M

k k1
).,|(),|( oxox wWxfwWXf  Assuming a complete representation where, say, 

4=n  granule cells receive the same 4=n  mossy fibers, the n-dimensional mossy fibers 

input can be written as )(1
owsWx += −  in the linear regime of  s = W x – wo  by 

inverting the network. Dropping the index k, the density of a single data point is obtained 

by marginalizing over the states of the network, 

dssfwWsxfwWxf soxox )(),,|(),|( �= where )(),,|( 11
oox wWsWxδwWsxf −− +−= and 

where )(⋅δ  is the n-dimensional delta function.   
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Learning rules 

The learning rules for the weights }{ jiw  and }{ Ojw  are derived by taking the gradient of 

the log likelihood above and multiplying the results by WWT . For an active mossy fiber 

0>ix , and  

for an active granule cell 0>js ,  

                                                            �−∝∆
j

jijjiji wsww α  

                                                            α+∝∆ Ojw  

for an inactive granule cell 0=js , 

                                                           �+∝∆
j

jijjiji wsww β  

                                                            β−∝∆ Ojw  

The synaptic weight update rules change sharply depending on whether the granule cell is 

active or not. Notice that a backward summation �=
j jiji wsX from granule cell activity 

js must be computed at the i th glomerulus and that the particular connectivity at the 

glomerulus makes its computation possible (see below). The summation iX is unique to 

the i th glomerulus, and is the same for all weight changes jiw∆ at that glomerulus, but 

the difference �−
j

jijji wsw α is unique to each synapse at that glomerulus.  

Although these learning rules were derived for the complete case, Girolami et al. showed 

that the same learning rules hold whether s forms a complete or an undercomplete 

representation of x.  In our case, complete and undercomplete refer to whether the 

number of granule cells with the same mossy fiber inputs is equal or smaller than the 

number of mossy fiber inputs x to the granule cell s.  

 

The backward summation �=
j jiji wsX is biologically plausible in the granular layer of 

the cerebellum due to the unique convergence of information at the glomeruli. Because 

the granule cells are electrotonically compact (refs here 9, 17, 33), the spiking activity at 

the soma is assumed to be reflected at the dendrites.  
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Figure 1. Back-propagating GC spikes may be encoded as external calcium changes 

in the glomerulus. 

A. Illustration of the interface of the mossy fiber and granule cell layers.   

B. Calcium in the glomerular cleft is shared.  Experimental data suggests that a back-

propagating spike travels relatively unattenuated along dendritic branches, especially in 

the electrotonically compact granule cells.  The occurrence of the back-propagating 

dendritic spike is associated with large influxes of calcium through voltage-gated 

channels. This influx is mirrored by a peri-dendritic efflux of calcium from the 

glomerular extracellular space.  The total calcium concentration in the glomerulus would 

decrease when a BP-spike arrives along a GC dendrite. 
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Figure 2.  Simulating a 3D glomerulus.   

A. In our Neural Growth Simulator, dendritic tips determine their paths by local 

avoidance rules.  Each tip attempts to take a step under the constraint that it cannot come 

within a fixed distance of any other dendrite.  After 80 steps of the simulation, growth is 

stopped, and the dendrites ‘inflate’ to fill any available voxels. 

B. When the voxels have all been committed, a Marching Cubes algorithm constructs 

each dendrite into a 3D polygon mesh.  The coordinates of the polygon mesh are read 

into MCell, where calcium ions, channels, and pumps are distributed appropriately (see 

Methods).   
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Figure 3. Changes in granule cell firing rates modulate the extracellular calcium 

signal.  

A. Simulations of calcium dynamics performed with the Monte Carlo simulator MCell, 

using explicity modeled calcium channels, pumps, and 13,688 calcium atoms.  In these 

simulations, a single mossy fiber terminal articulates with 40 GCs.  The GCs have an 

Poisson average firing rate of 5 Hz (top trace) or 35 Hz (bottom trace).  Shown below are 

the spike trains of 12 of the GCs. 

B. If the GCs have an adapting firing rate, a burst of firing will slow down.  In this 

simulation, there are the same number of total spikes as in Fig 3A, but here the rate 

begins quickly and slows.  In this situation, the new calcium set point is approached more 

quickly. 
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Figure 4. Principles for coding and plasticity at the granule cells.  

A.  Illustration of the goal of the learning rule: to maximize the mutual information 

between the mossy fiber inputs and the granule cell outputs under a sparseness constraint 

on the firing of the GCs. 

B. The learning rule searches for sparse directions in mossy fiber space. 
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